Long-Term Administration of Dehydroepiandrosterone Accelerates Glucose Catabolism via Activation of PI3K/Akt-PFK-2 Signaling Pathway in Rats Fed a High-Fat Diet
نویسندگان
چکیده
Dehydroepiandrosterone (DHEA) has a fat-reducing effect, while little information is available on whether DHEA regulates glucose metabolism, which would in turn affect fat deposition. To investigate the effects of DHEA on glucose metabolism, rats were administered a high-fat diet containing either 0 (HCG), 25 (HLG), 50 (HMG), or 100 (HHG) mg·kg-1 DHEA per day via gavage for 8 weeks. Results showed that long-term administration of DHEA inhibited body weight gain in rats on a high-fat diet. No statistical differences in serum glucose levels were observed, whereas hepatic glycogen content in HMG and HHG groups and muscle glycogen content in HLG and HMG groups were higher than those in HCG group. Glucokinase, malate dehydrogenase and phosphofructokinase-2 activities in HMG and HHG groups, pyruvate kinase and succinate dehydrogenase activities in HMG group, and pyruvate dehydrogenase activity in all DHEA treatment groups were increased compared with those in HCG group. Phosphoenolpyruvate carboxykinase and glycogen phosphorylase mRNA levels were decreased in HMG and HHG groups, whereas glycogen synthase-2 mRNA level was increased in HMG group compared with those in HCG. The abundance of Glut2 mRNA in HMG and HHG groups and Glut4 mRNA in HMG group was higher than that in HCG group. DHEA treatment increased serum leptin content in HMG and HHG groups compared with that in HCG group. Serum insulin content and insulin receptor mRNA level in HMG group and insulin receptor substrate-2 mRNA level in HMG and HHG group were increased compared with those in HCG group. Furthermore, Pi3k mRNA level in HMG and Akt mRNA level in HMG and HHG groups were significantly increased than those in HCG group. These data showed that DHEA treatment could enhance glycogen storage and accelerate glucose catabolism in rats fed a high-fat diet, and this effect may be associated with the activation of PI3K/Akt-PFK-2 signaling pathway.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملAnti-diabetic effect of loganin by inhibiting FOXO1 nuclear translocation via PI3K/Akt signaling pathway in INS-1 cell
Objective(s): JiangTangXiaoKe (JTXK) granule, a Chinese traditional herbal formula, has been clinically used and demonstrated to be beneficial in controlling high glucose and to relieve the symptoms of Type 2 diabetes mellitus patients for decades. In this study, we explored how loganin, one of the components in JTXK granule, mediated the anti-diabetic effect.Materials and Methods: We generate...
متن کاملDietary Lycium barbarum Polysaccharide Induces Nrf2/ARE Pathway and Ameliorates Insulin Resistance Induced by High-Fat via Activation of PI3K/AKT Signaling
Lycium barbarum polysaccharide (LBP), an antioxidant from wolfberry, displays the antioxidative and anti-inflammatory effects on experimental models of insulin resistance in vivo. However, the effective mechanism of LBP on high-fat diet-induced insulin resistance is still unknown. The objective of the study was to investigate the mechanism involved in LBP-mediated phosphatidylinositol 3-kinase ...
متن کاملP22: The Association between TrkB Signaling Pathway and NMDARs in LTP Induction
Long-term potentiation (LTP) is a biological process of learning and memory after a high-frequency train of electrical stimulations. By binding of brain-derived neurotrophic factor (BDNF) to Tropomyosin receptor kinase B (TrKB) receptors in postsynaptic neurons, tyrosine kinase Fyn is bound to these receptors and hereby plays a mediating role to binding and activation of N-methyl-D-aspartic aci...
متن کاملLong-Term Over-Expression of Neuropeptide Y in Hypothalamic Paraventricular Nucleus Contributes to Adipose Tissue Insulin Resistance Partly via the Y5 Receptor
Intracerebroventricular injection and overexpression of Neuropeptide Y (NPY) in the paraventricular nucleus (PVN) has been shown to induce obesity and glucose metabolism disorder in rodents; however, the underlying mechanisms are still unclear. The aim of this study was to investigate the mechanism contributing to glucose metabolic disturbance induced by NPY. Recombinant lentiviral NPY vectors ...
متن کامل